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SUMMARY

This abstract explores the potential advantages of discontin-
uous Galerkin (DG) methods for the time-domain inversion
of media parameters within the earth’s interior. In particular,
DG methods enable local polynomial refinement to better
capture localized geological features within an area of interest
while also allowing the use of unstructured meshes that can
accurately capture discontinuous material interfaces. This
abstract describes our initial findings when using DG methods
combined with Runge-Kutta time integration and adjoint-
based optimization algorithms for full-waveform inversion.
Our initial results suggest that DG methods allow great flex-
ibility in matching the media characteristics (faults, ocean
bottom and salt structures) while also providing higher fidelity
representations in target regions.

INTRODUCTION

Inversion of earth media parameters is of primary importance
to exploration geophysics with the specific goal of construct-
ing accurate subsurface characterizations in a computationally
efficient manner. Full-waveform inversion (FWI) is one of sev-
eral techniques that are being pursued to produce higher qual-
ity earth models. Recently, Krebs et al. (2009) have demon-
strated the viability of this approach by combining FWI with
phase encoding in order to efficiently produce accurate earth
models. Although their synthetic experiments show accu-
rate reconstructions when using time-domain finite-difference
methods on structured grids, in practice complex geological
structures and material properties may hinder the ability of
these methods to accurately invert for these features. In this
paper, we build on the FWI and phase-encoding ideas but make
use of an unstructured, yet high-order accurate, numerical ap-
proach based upon the DG method. We explore the flexibility
engendered by DG methods to improve the characterization of
complex subsurface features through unstructured meshes and
localized polynomial refinement.

Discontinuous Galerkin methods have been developed and
utilized in many fields since their inception in the early 1970’s
(see e.g., Reed and Hill 1973; Cockburn 1999; Cockburn et al.
2000; Hesthaven and Warburton 2008). In the past several
years, DG methods have been applied to seismic modeling by
Käser, Dumbser, and co-workers who have investigated several
aspects of DG methods in relationship to forward seismic-
wave propagation on unstructured meshes including: elas-
tic wave propagation (Käser and Dumbser, 2006), numerical
properties (Käser et al., 2008), viscoelastic attenuation (Käser
et al., 2007), topography representation (Käser et al., 2008;
de la Puente, 2008; Park and Antin, 2004), and p-adaptivity
(Dumbser et al., 2007). DG methods in conjunction with inver-
sion have also recently been explored in the frequency domain
(Brossier et al., 2009). However, one feature, common to all

these prior studies is that they are limited to piecewise constant
representations of medium parameters within each element.
This significantly reduces their ability to accurately represent
complex earth models. For example, even a simple linear
variation of properties with depth must be represented with a
staircase-like, elementwise, constant-layered approximation.

In this study, we investigate time-domain acoustic inversion
with DG methods that are not artificially constrained to use
piecewise constant material models. In this context, we inves-
tigate the advantages of both unstructured meshes and higher-
order polynomial refinement. The large-scale nature of the
earth-model inversion problem requires efficient algorithms
and to meet those needs, we use adjoint-based gradient decent
algorithms, simultaneous source encoding, and fully parallel,
distributed-memory implementations. Results are presented
for synthetic numerical experiments based on the Marmousi2
model (Martin et al., 2006).

FORMULATION AND METHODOLOGY

The acoustic FWI problem can be formulated as a constrained
optimization problem with a least-squares objective function
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subject to the acoustic wave equation
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p(x,0) = 0 for x ∈Ω (2c)

v(x,0) = 0 for x ∈Ω (2d)

which is solved subject to appropriate boundary conditions. In
these expressions, β = 1/(ρc2) is the compressibility; B is the
space of admissible media; ρ is the mass-density; c is the wave
speed; Ω is the computational domain; T is the time horizon;
Nr is the number of receivers; Ns is the number of sources; ωs
is the random phase encoding for source s; φ is encoded sum
of all explosive pressure sources; p̃ is the measured pressure
data; and ξr(x) is the spatial kernel for receiver r. The forms
for φ , ωs and ξr are described in more detail below. The
state variables are pressure, p(x, t) and particle velocity, v(x, t)
defined for (x, t) ∈Ω× [0,T ].

We have written the acoustic wave equations in first-order, flux
form such that the material properties, ρ and β appear on the
time derivative. In this way, the system can be readily seen to
be a conservative, hyperbolic system where the conservation
variables are the products β p and ρv. This allows the direct
application of a standard conservative discontinuous Galerkin
method with no artificial restrictions on the variation of media
parameters.
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The adjoint-state method (see, e.g., Tarantola 2005) is used to
solve the inversion problem, by forming a Lagrangian func-
tional that combines the objective function and the constraint
(state equations) multiplied by adjoint variables. The optimal-
ity conditions are derived by taking variations with respect
to the state, adjoint and inversion variables and setting the
resulting equations to zero. This produces the original state
equations, adjoint equations, and a nonlinear gradient equation
along with adjoint boundary and end conditions. The adjoint
equation is driven by a source term that comes from the lin-
earized objective function but is otherwise identical in form to
the original state equations for this self-adjoint system.

Our numerical solution strategy consists of a sequential ap-
proach in which the state equation is first solved and then the
adjoint equation is integrated backwards starting from the ad-
joint end-condition. The adjoint solution is then used to solve
the gradient equation and a gradient descent algorithm along
with a line search is used to update the inversion parameters.

In principle our numerical implementation mimics the solution
strategy described above but there are some differences that are
worth noting. Instead of deriving the optimization conditions,
then discretizing, and finally linearizing, we instead discretize,
linearize and derive the optimality conditions. The latter ap-
proach is better suited to accommodate a DG discretization.
We have verified our gradients against directional finite differ-
ences (both second and fourth order) using random direction
vectors with agreement to double-precision machine accuracy.

Our DG spatial discretization is based on the work of Collis
and co-workers (Collis, 2002a,b; Collis and Ghayour, 2003;
Chen, 2004; Chen and Collis, 2004; Ramakrishnan and Collis,
2004; Ramakrishnan, 2005; Chen and Collis, 2008) and is a
modal DG implementation in which numerical quadrature is
used to accurately evaluate integrals in the resulting weak-
form. This is to be contrasted with the work of Dumbser,
Käser and co-workers who use a quadrature-free approach that
is particularly attractive for linear, constant coefficient systems
where exact integration can be used to improve computation-
ally efficiency. Unfortunately, the quadrature-free approach,
which is well-known in the the CFD community (Atkins and
Shu, 1997), comes with several important restrictions: only
simplicial meshes are allowed, curved elements are not sup-
ported, elements must have constant medium properties, and
nonlinearities lead to aliasing or the need for spatial filters.
While these constraints may at first seem daunting, there are
important problems (linear wave propagation through elemen-
twise homogeneous materials) for which these methods are
quite useful. Nevertheless, it is the opinion of the authors
that such an approach is not viable for seismic inversion where
sub-element level variations in material properties are required
– especially for the rather large element sizes that are ideally
used in high-order DG for the wavefield variables.

Our DG implementation removes these restrictions thereby al-
lowing hybrid meshes of quadrilateral and triangular elements,
curved boundaries to more accurately capture topology, and
high-order polynomial variations of material properties within
each element. A companion submitted abstract (T. M. Smith,
S. S. Collis, C. C. Ober, J. R. Overfelt, and H. F. Schwaiger,

personal communication, 2010) describes our variable media
DG implementation in more detail in the context of isotropic,
linear elasticity. For the acoustic equations presented here,
the formulation is analogous except that differentiability of
the medium properties within each element is not required
since the equations are solved in conservation form. We
recently reported simple verification studies for our DG imple-
mentation using manufactured solutions of the acoustic wave
equation (Ober et al., 2009) and, subsequently, the method has
been validated in both 2D and 3D against reference solutions
and time-domain finite-difference codes for both acoustic and
elastic physics. Due to space limitations, both the detailed
formulation and verification studies are not reported here, but
will be summarized in the associated presentation.

Our DG spatial discretization is used in conjunction with ex-
plicit time-stepping using a standard fourth-order Runge-Kutta
algorithm for both the state and adjoint equations where care
is taken to use a method that is self-adjoint. It should be
noted that the optimality conditions of this material inversion
problem are nonlinear and therefore a gradient-descent method
coupled with a line-search algorithm (Brent, 1973) is used.
A random phase-encoding scheme is implemented, equivalent
to the one developed by Krebs et al. (2009) in which re-
encoding is used on every iteration. Under these conditions, it
is not clear whether one can reliably use a conjugate-gradient
algorithm which requires a two-step recurrence. Therefore, we
use a simple steepest-descent approach here and future work
will explore the use of more advanced optimization algorithms.
Despite the possibly unattractive convergence properties of
steepest descent, the benefits of phase encoding (and thereby
simultaneously inverting multiple shots), far outweighs the
benefit of sequentially inverting for each source.

In this study, an explosion source is used of the form

φ(x, t) =
Ns∑

s=1

ωsw(t)ξs(x) (3)

where ωs ∈ {−1,1} is the random encoding scalar for source
s and w(t) is a Ricker wavelet defined by
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and using fp = 5 Hz and t0 = 0.3 s. The spatial kernel is given
by a Gaussian ball centered at xs with standard deviation, σ ,
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where N is the number of space-dimensions (N = 2 for the
studies presented here). Receivers are also modeled using
the Gaussian kernel for ξr(x) and σ = 30m for the cases
presented here. Note that we could also have used a kernel
of the form ξs(x) = δ (x− xs) which would closely match
the formulation used by Krebs et al. (2009). However, Dirac
delta functions introduce a fundamentally unresolvable feature
within any discretized numerical implementation and we chose
to make sure that our problem setup was fully resolvable for
our initial studies. Future studies will explore point sources
and receivers.
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Figure 1: Marmousi2 earth model: (a) the true model with
20 m sampling and (b) the smoothed initial model.

RESULTS

Structured Mesh Inversion

We consider an inversion problem based on the Marmousi2
model (Martin et al., 2006), down sampled to 20 m over the
region 0≤ x≤ 16000 m, and 0≤ y≤ 3500 m as shown in Fig-
ure 1(a). The model has been padded on the bottom by 500 m,
not shown, so that a sponge-type (Grosch and Orszag, 1977)
non-reflecting boundary condition does not affect the lower
portion of the model. This padded region simply duplicates
values of the bottom of the model and produces a total model
depth of 4000 m. The sources are uniformly spaced at (xs =
s∗1000 m, 300 m) where 1≤ s≤ (Ns = 15), with simultaneous
random phase-encoding. The receivers are uniformly spaced at
(xr = r ∗200+500 m, 100 m) where 0≤ r ≤ (Nr = 75).

First consider a structured mesh composed of quadrilaterals
mimicking a standard finite-difference grid but with cell sizes
of 200 m. With 1,600 elements (80× 20) and a polynomial
order of five, a total of 80× 20× (5+ 1)2 = 57,600 degrees
of freedom are used for each field variable, relative to 800×
200 = 160,000 for finite-difference at 20 m resolution. The
greater resolving power of DG affords a significant reduction
in degrees of freedom, both in the wavefield and in model
parameters. A free-surface boundary condition is enforced on
the ocean surface and a sponge-type, non-reflecting bound-
ary treatment along with first-order characteristic-based non-
reflecting boundary conditions are imposed on the sides and
bottom of the computational domain.

To obtain an initial model, the true model, shown in Fig-
ure 1(a), was smoothed using a damped least-squares method
where the smoothing operator at the top surface was 500 m
(vertically) by 1000 m (horizontally) and linearly increased by
a factor of four towards the bottom of the model. The initial
model is shown in Figure 1(b) and is similar to that used by
Krebs et al. (2009).

One method to reduce the computational costs is to start in-
version with a short-time horizon, T , to initially invert for
the shallow layers. This shortened time horizon reduces the
cost of the forward modeling and subsequently the inversion
algorithm. Once the shallow layers are fairly well resolved
(i.e., the reduction in the model-fit slows), one can increase T
to include additional data and then continue the inversion to
obtain additional details at depth.

Figure 2: Influence of parameterization on model-fit conver-
gence in terms of c in units of m/s (first five curves). Model-
fit for different time horizons using inversion parameter S3

(fifth through eighth curves). Comparison of the polynomial
refinement and the unstructured mesh (last two curves).

We start with a time horizon of T = 2.67 s and begin by
investigating the influence of parameterization on the rate of
convergence. One such set of parameterizations are powers
of the wave speed, c. As shown in Figure 2, there is a clear
trend that negative powers of c lead to faster convergence in the
model-fit. The slowest convergence is observed when using
bulk modulus, κ = ρc2. Inverting directly for c leads to a
slight improvement in convergence. But, successive negative
powers of c, moving from slowness, S = 1/c, to compress-
ibility, β = 1/(ρc2) to S3 = 1/c3 each result in increased
rates of convergence in model-fits. While this suggests that S3

may be a particularly effective parameterization for acoustic
inversion of this model, additional investigations are required
to determine the generality of this result.

Figure 2 also shows the effect of increasing the time-horizon
from T = 2.67 s to T = 5.33 s. With more trace data, the T =
5.33 s case is better able to reduce the model-fit, however this
is with additional cost. At 300 iterations, the inverted model
from the T = 2.67 s time horizon was used as the initial model
to restart the T = 5.33 s time horizon run. As seen in Figure 2,
this restart method quickly approaches the original T = 5.33 s
time-horizon curve but at a computational savings of 23%.
Further savings could be achieved if additional restarts had
been employed with intermediate time-horizons. Inversions
were also performed using T = 8 s but no additional improve-
ment in model-fit was observed (see Figure 2).

The projected and predicted models are shown in Figure 3(a.1)
and (a.2), respectively, and are in good agreement. It should be
noted that the projected model is the best one could expect as
it shows what can be represented by the DG method using a
polynomial order of five on 200 m elements.

Inversion with Local Polynomial Refinement

In Figure 3(a) there are two areas of interest denoted with black
arrows. One is near a target region in the upper left quadrant
and the other is in the anticline region. Because of the thin
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Figure 3: Acoustic wave-speed for both (1) projected and
(2) predicted models using S3 inversion parameter at 400
iterations and T = 5.33 s: (a) uniform structured mesh; (b)
local p-refinement; (c) unstructured mesh at 215 iterations.

structure of the target, the media is not well represented on
the uniform mesh with 200 m elements and p = 5. Likewise,
in the anticline region, inter-element jump can be seen in
the predicted model (i.e., a slight discontinuous horizontal
behavior). These types of DG jumps at mesh boundaries
can be used as error-indicators that point to regions requiring
mesh refinement. Our future work will explore automated
solution adaptive inversion using jumps as error indicators.
Here, we do a proof-of-principle study by locally increasing
the polynomial order from p = 5 to 8 in these two areas
and re-running the inversion. Figure 3(b.1) shows that the
projection of the truth solution is indeed improved in these
two regions (e.g., the magnitude and size of the target region).
Figure 3(b.2) shows the predicted model on the p-refined mesh
with improved results around the target region and removal
of the inter-element jumps near the anticline. The model-fit
with local polynomial refinement is shown in Figure 2 and is
similar to that of the structured-mesh inversion confirming that
a global L2 measure is insensitive to these local improvements.

Unstructured Mesh Inversion

Discontinuous-material interfaces, such as ocean bottom, salt
structures, and faults, occur routinely in surveyed regions.
Traditionally, these interfaces are smoothed to allow for mesh-
ing as well as compatibility with high-order finite-difference

Figure 4: Unstructured mesh aligning with faults, salt flanks
and selected layers.

methods. Using unstructured DG methods, these interfaces
can be captured with the mesh to produce more accurate results
(see Figure 4). We used the Cubit (Clark, 2010) meshing
package to discretize the Marmousi2 model with a hybrid
mesh of triangles and quadrilaterals. The layers, faults and
salt structure were obtained through the original Marmousi2
model specification. In a real problem, this information would
be iteratively determined as part of the inversion, but here it
serves as a proof-of-principle for mesh-adaptive inversion.

Model-fit convergence is shown in Figure 2 with a trend sim-
ilar to the structured mesh cases. However, the magnitude
of the initial model-fit is higher than the structured mesh
results. Since the unstructured mesh exactly captures several
high-contrast geological features, it does a relatively better
job of representing the truth model, Fig. 1(a), then the struc-
tured mesh while the smooth initial model, Fig. 1(b), is well-
represented on all meshes thereby leading to a higher initial
model miss-fit. The better representation of the projected
truth model is clear when comparing Figure 3(c.1) to (b.1).
Figure 3(c.2) shows the predicted model (after 215 iterations)
for the unstructured mesh which is similar in quality to the
structured mesh in most regions of the model. The target
region is not as well represented since the mesh is relatively
coarse there (see Figure 4). A careful examination of the fault
regions suggest that the unstructured mesh is better able to
represent these features for inversion but additional work is
needed to fully exploit the potential of unstructured meshing.

CONCLUSIONS

Time-domain inversion using discontinuous Galerkin on un-
structured meshes and with local polynomial refinement is
shown to better capture localized geological features and ac-
curately capture discontinuous-material interfaces. These ap-
proaches provide the ability to surgically refine representations
in order to improve predicted models for specific geological
features. Our future work will entail automated extensions to
directly incorporate local refinement and adaptive unstructured
meshes within the inversion process.
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